Publications by Year: 2004

2004

Haidar H, Bouix S, Levitt J, McCarley RW, Shenton ME, Soul JS. An elliptic PDE approach for shape characterization. Conf Proc IEEE Eng Med Biol Soc. 2004;2:1521–4. doi:10.1109/IEMBS.2004.1403466
This work presents a novel approach to analyze the shape of anatomical structures. Our methodology is rooted in classical physics and in particular Poisson’s equation, a fundamental partial differential equation, The solution to this equation and more specifically its equipotential surfaces display properties that are useful for shape analysis. We present a numerical algorithm to calculate the length of streamlines formed by the gradient field of the solution to this equation for 2D and 3D objects. The length of the streamlines along the equipotential surfaces was used to build a new function which can characterize the shape of objects. We illustrate our method on 2D synthetic and natural shapes as well as 3D medical data.
Mitsouras D, Hoge S, Rybicki FJ, Kyriakos WE, Edelman A, Zientara GP. Non-Fourier-encoded parallel MRI using multiple receiver coils. Magn Reson Med. 2004;52(2):321–8. doi:10.1002/mrm.20172
This paper describes a general theoretical framework that combines non-Fourier (NF) spatially-encoded MRI with multichannel acquisition parallel MRI. The two spatial-encoding mechanisms are physically and analytically separable, which allows NF encoding to be expressed as complementary to the inherent encoding imposed by RF receiver coil sensitivities. Consequently, the number of NF spatial-encoding steps necessary to fully encode an FOV is reduced. Furthermore, by casting the FOV reduction of parallel imaging techniques as a dimensionality reduction of the k-space that is NF-encoded, one can obtain a speed-up of each digital NF spatial excitation in addition to accelerated imaging. Images acquired at speed-up factors of 2x to 8x with a four-element RF receiver coil array demonstrate the utility of this framework and the efficiency afforded by it.
Boiman O, Peled S, Yeshurun Y. Detection of pseudoperiodic patterns using partial acquisition of magnetic resonance images. Magn Reson Imaging. 2004;22(9):1265–78. doi:10.1016/j.mri.2004.08.016
Improving the resolution of magnetic resonance imaging (MRI), or, alternatively, reducing the acquisition time, can be quite beneficial for many applications. The main motivation of this work is the assumption that any information that is a priori available on the target image could be used to achieve this goal. In order to demonstrate this approach, we present a novel partial acquisition strategy and reconstruction algorithm, suitable for the special case of detection of pseudoperiodic patterns. Pseudoperiodic patterns are frequently encountered in the cerebral cortex due to its columnar functional organization (best exemplified by orientation columns and ocular dominance columns of the visual cortex). We present a new MRI research methodology, in which we seek an activity pattern, and a pattern-specific experiment is devised to detect it. Such specialized experiments extend the limits of conventional MRI experiments by substantially reducing the scan time. Using the fact that pseudoperiodic patterns are localized in the Fourier domain, we present an optimality criterion for partial acquisition of the MR signal and a strategy for obtaining the optimal discrete Fourier transform (DFT) coefficients. A by-product of this strategy is an optimal linear extrapolation estimate. We also present a nonlinear spectral extrapolation algorithm, based on projections onto convex sets (POCSs), used to perform the actual reconstruction. The proposed strategy was tested and analyzed on simulated signals and in MRI phantom experiments.
Pujol S, Pecher M, Magne J-L, Cinquin P. A virtual reality based navigation system for endovascular surgery. Stud Health Technol Inform. 2004;98:310–2.
Endovascular surgery provides a minimally invasive solution for the treatment of aortic aneurysms. Fluoroscopic guidance involves X-rays exposure and loss of space information. We have developed a navigation system allowing real-time visualisation of the endovascular tools in a 3D model of the vessels without any radiation exposure. A modified endoprosthesis is equipped with a magnetic sensor tracked by the Aurora magnetic localizer. The registration step uses 2.5D ultrasonography to replace pre-operative CT data in the Operating Room referential. The Virtual Reality based navigation system shows the location of the endoprosthesis inside a 3D CT model of the aorta. Endovascular procedure benefits from a reduced radiation exposure.
Park H-J, Westin C-F, Kubicki M, Maier SE, Niznikiewicz M, Baer A, Frumin M, Kikinis R, Jolesz FA, McCarley RW, et al. White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. Neuroimage. 2004;23(1):213–23. doi:10.1016/j.neuroimage.2004.04.036
Hemisphere asymmetry was explored in normal healthy subjects and in patients with schizophrenia using a novel voxel-based tensor analysis applied to fractional anisotropy (FA) of the diffusion tensor. Our voxel-based approach, which requires precise spatial normalization to remove the misalignment of fiber tracts, includes generating a symmetrical group average template of the diffusion tensor by applying nonlinear elastic warping of the demons algorithm. We then normalized all 32 diffusion tensor MRIs from healthy subjects and 23 from schizophrenic subjects to the symmetrical average template. For each brain, six channels of tensor component images and one T2-weighted image were used for registration to match tensor orientation and shape between images. A statistical evaluation of white matter asymmetry was then conducted on the normalized FA images and their flipped images. In controls, we found left-higher-than-right anisotropic asymmetry in the anterior part of the corpus callosum, cingulum bundle, the optic radiation, and the superior cerebellar peduncle, and right-higher-than-left anisotropic asymmetry in the anterior limb of the internal capsule and the anterior limb’s prefrontal regions, in the uncinate fasciculus, and in the superior longitudinal fasciculus. In patients, the asymmetry was lower, although still present, in the cingulum bundle and the anterior corpus callosum, and not found in the anterior limb of the internal capsule, the uncinate fasciculus, and the superior cerebellar peduncle compared to healthy subjects. These findings of anisotropic asymmetry pattern differences between healthy controls and patients with schizophrenia are likely related to neurodevelopmental abnormalities in schizophrenia.
Park H-J, Kubicki M, Westin C-F, Talos I-F, Brun A, Peiper S, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. Method for combining information from white matter fiber tracking and gray matter parcellation. AJNR Am J Neuroradiol. 2004;25(8):1318–24.
We introduce a method for combining fiber tracking from diffusion-tensor (DT) imaging with cortical gray matter parcellation from structural high-spatial-resolution 3D spoiled gradient-recalled acquisition in the steady state images. We applied this method to a tumor case to determine the impact of the tumor on white matter architecture. We conclude that this new method for combining structural and DT imaging data is useful for understanding cortical connectivity and the localization of fiber tracts and their relationship with cortical anatomy and brain abnormalities.
Brun A, Knutsson H, Park H-J, Shenton ME, Westin C-F. Clustering Fiber Traces Using Normalized Cuts. Med Image Comput Comput Assist Interv. 2004;3216/2004(3216):368–375. doi:10.1007/b100265
In this paper we present a framework for unsupervised segmentation of white matter fiber traces obtained from diffusion weighted MRI data. Fiber traces are compared pairwise to create a weighted undirected graph which is partitioned into coherent sets using the normalized cut (N cut) criterion. A simple and yet effective method for pairwise comparison of fiber traces is presented which in combination with the N cut criterion is shown to produce plausible segmentations of both synthetic and real fiber trace data. Segmentations are visualized as colored stream-tubes or transformed to a segmentation of voxel space, revealing structures in a way that looks promising for future explorative studies of diffusion weighted MRI data.
Kozinska D, Holland CM, Krissian K, Westin C-F, Guttmann CRG. A method for the analysis of the geometrical relationship between white matter pathology and the vascular architecture of the brain. Neuroimage. 2004;22(4):1671–8. doi:10.1016/j.neuroimage.2004.04.014
A novel method for the visual and quantitative analysis of the geometrical relationship between the vascular architecture of the brain and white matter pathology is presented. The cerebro vascular system is implicated in the pathogenesis of many diseases of the cerebral white matter, for example, stroke, microcerebrovascular disease, and multiple sclerosis (MS). In our work, white matter lesions and vessels are depicted using magnetic resonance imaging (MRI) and extracted using image analysis techniques. We focus on measuring distance relationships between white matter lesions and vessels, and distribution of lesions with respect to vessel caliber. Vascular distance maps are generated by computing for each voxel the Euclidean distance to the closest vessel. Analogously, radius maps assign the radius of the closest vessel to each voxel in the image volume. The distance and radius maps are used to analyze the distribution of lesions with respect to the vessels’ locations and their calibers. The method was applied to three MS patients to demonstrate its functionality and feasibility. Preliminary findings indicate that larger MS lesions tend to be farther from detected vessels and that the caliber of the vessels nearest to larger lesions tends to be smaller, suggesting a possible role of relative hypoperfusion or hypoxia in lesion formation.
Levitt JJ, Westin CF, Nestor PG, Estepar RSJ, Dickey CC, Voglmaier MM, Seidman LJ, Kikinis R, Jolesz FA, McCarley RW, et al. Shape of caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder. Biol Psychiatry. 2004;55(2):177–84.
BACKGROUND: We measured the shape of the head of the caudate nucleus with a new approach based on magnetic resonance imaging (MRI) in schizotypal personality disorder (SPD) subjects in whom we previously reported decreased caudate nucleus volume. We believe MRI shape analysis complements traditional MRI volume measurements. METHODS: Magnetic resonance imaging scans were used to measure the shape of the caudate nucleus in 15 right-handed male subjects with SPD, who had no prior neuroleptic exposure, and in 14 matched normal comparison subjects. With MRI processing tools, we measured the head of the caudate nucleus using a shape index, which measured how much a given shape deviates from a sphere. RESULTS: In relation to comparison subjects, neuroleptic never-medicated SPD subjects had significantly higher (more "edgy") head of the caudate shape index scores, lateralized to the right side. Additionally, for SPD subjects, higher right and left head of the caudate SI scores correlated significantly with poorer neuropsychological performance on tasks of visuospatial memory and auditory/verbal working memory, respectively. CONCLUSIONS: These data confirm the value of measuring shape, as well as volume, of brain regions of interest and support the association of intrinsic pathology in the caudate nucleus, unrelated to neuroleptic medication, with cognitive abnormalities in the schizophrenia spectrum.
Maier SE, Vajapeyam S, Mamata H, Westin C-F, Jolesz FA, Mulkern RV. Biexponential diffusion tensor analysis of human brain diffusion data. Magn Reson Med. 2004;51(2):321–30. doi:10.1002/mrm.10685
Several studies have shown that in tissues over an extended range of b-factors, the signal decay deviates significantly from the basic monoexponential model. The true nature of this departure has to date not been identified. For the current study, line scan diffusion images of brain suitable for biexponential diffusion tensor analysis were acquired in normal subjects on a clinical MR system. For each of six noncollinear directions, 32 images with b-factors ranging from 5 to 5000 s/mm2 were collected. Biexponential fits yielded parameter maps for a fast and a slow diffusion component. A subset of the diffusion data, consisting of the images obtained at the conventional range of b-factors between 5 and 972 s/mm2, was used for monoexponential diffusion tensor analysis. Fractional anisotropy (FA) of the fast-diffusion component and the monoexponential fit exhibited no significant difference. FA of the slow-diffusion biexponential component was significantly higher, particularly in areas of lower fiber density. The principal diffusion directions for the two biexponential components and the monoexponential solution were largely the same and in agreement with known fiber tracts. The second and third diffusion eigenvector directions also appeared to be aligned, but they exhibited significant deviations in localized areas.